

Impactos dos Recursos Energéticos Distribuídos sobre o Setor de Distribuição

Djalma M. Falcão

Resumo

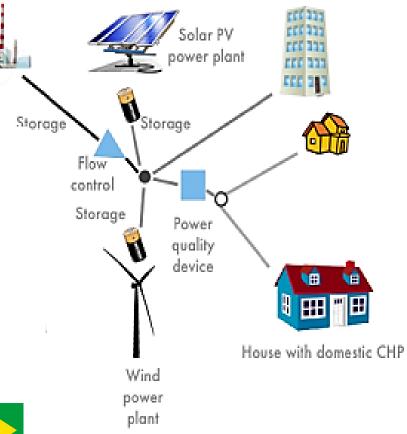
Parte 1 – Recursos Energéticos Distribuídos (Geração Distribuída)

- Cenário atual
- Tipos de geração distribuída
- Mini e micro geração distribuída (Brasil)
- Impactos na rede de distribuição e no sistema interligado

Projeto de P&D

- Descrição geral
- Cenários de difusão
- Resultados de simulações
- Conclusões

Cenário Atual dos Sistemas Elétricos


Deslocamento da geração centralizada para os Recursos Energéticos Distribuídos

- Geração Distribuída (GD)
- Armazenamento
- Gerenciamento da Demanda (Resposta da Demanda)
- Eficiência Energética
- Veículos Elétricos

Redes Elétricas Inteligentes

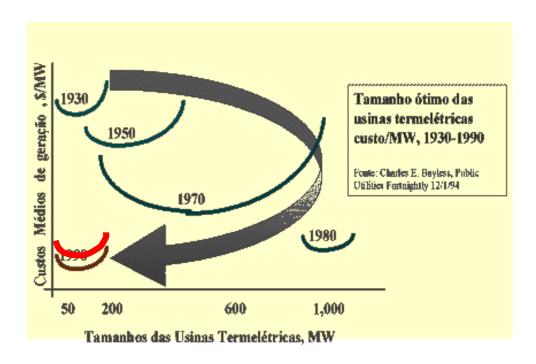
- Utilização em larga escala de tecnologias de informação, comunicação e automação
- Medidores inteligentes e sistemas avançados de medição
- Redução de perdas
- Melhoria da confiabilidade

Geração Distribuída

Conceito

 Geração localizada próxima ao consumo, em geral conectada à rede de distribuição (MT ou BT)

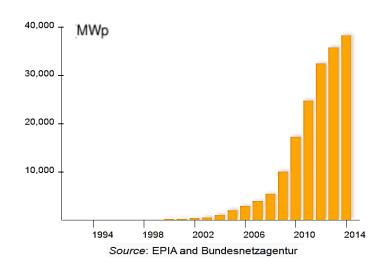
Vantagens

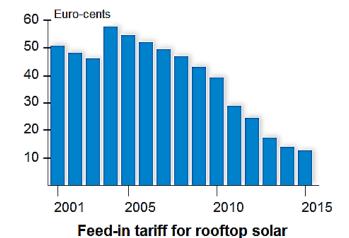

- Aumento da capacidade do sistema elétrico sem aumento de sua infraestrutura (G+T+D)
- Redução de perdas
- Alívio de congestionamento do sistema de transmissão
- Melhoria da confiabilidade do fornecimento de energia
- Menor impacto ambiental (fontes renováveis)
- Podem ajudar a regulação de tensão e outros aspectos de controle do sistema elétrico
- Permitem o surgimento do pequeno prosumidor

Tipos de Geração Distribuída

- Co-geradores
- Geradores que usam como fonte de energia resíduos combustíveis de processo
- Geradores de emergência
- Geradores para operação no horário de ponta
- Painéis fotovoltaicos
- Pequenas Centrais Hidrelétricas - PCH's

Alemanha


- Um dos países que mais utilizam energia solar no mundo
- Quase que exclusivamente fotovoltaica
- Instalações (2016)
 - 1.5 milhões de instalações
 - 41 GWp
 - 7,4 % da energia elétrica gerada (38,3 TWh)
 - No dia 26 de maio de 2012, a fonte solar produziu 40% da energia elétrica consumida


Boom

- 2010, 2011 e 2012
- Tarifa feed in muito favorável

O problema de 50,2 Hz

 Necessidade de retrofit de 315.000 instalações de geração fotovoltaica

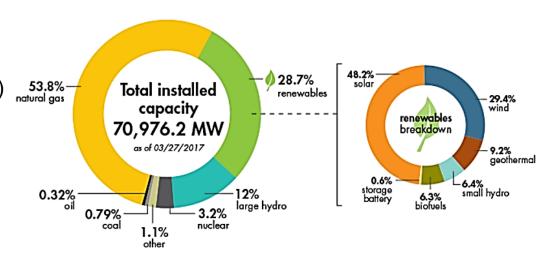
Califórnia (EUA)

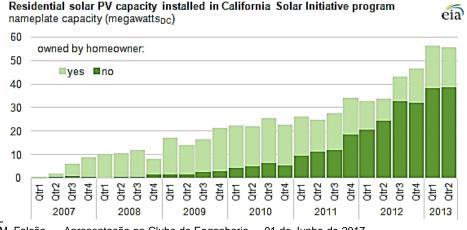
Estado americano com maior crescimento de geração solar

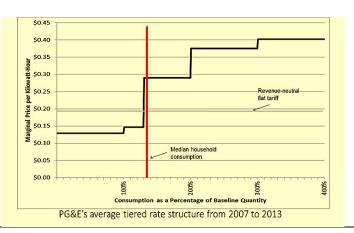
Energia

Fotovoltaica (12 GWh)

- Utility Scale (8 GWh)


- Roof Top (4 GWh)


Termosolar: 2,5 GWh


Capacidade instalada

Fotovoltaica: 5,5 GW

Termosolar: 1,3 GW

Geração Distribuída no Brasil (Dec. 5163 – 30/06/2004)

Capacidade	Tipo	Regras de Comercialização
30 MW	 Geração Distribuída PCHs Pequenas Eólicas Biomassa Co-geração 	Comercialização Energia
5 MW 3 MW	 Mini Geração Distribuída Fotovoltaica Eólica PCHs e CGHs Biomassa 	Sistema de Compensação de Energia (Net Metering)
75 kW	Micro Geração Distribuída • Fotovoltaica	

Microgeração e Minigeração Distribuída

- REN nº 482 (2012)
- REN nº 687 (2015)
- Microgeração

Potência de geração instalada menor ou igual a 75kW para qualquer fonte renovável

Minigeração

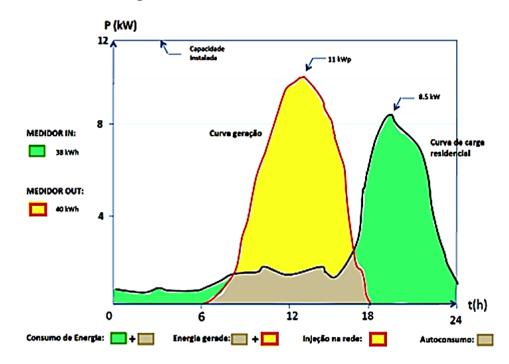
Potência de geração instalada superior a 75kW e menor ou igual a 5MW para novas fontes renováveis e superior a 75kW e menor ou igual a 3MW para fonte hidráulica

Cadernos Temáticos ANEEL

Micro e Minigeração Distribuída

Sistema de Compensação de Energia Elétrica

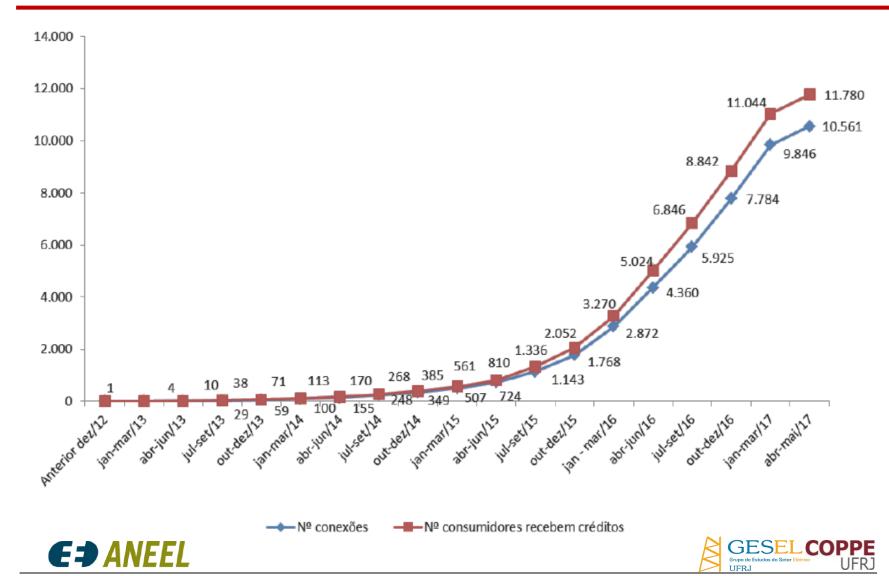
2ª edição

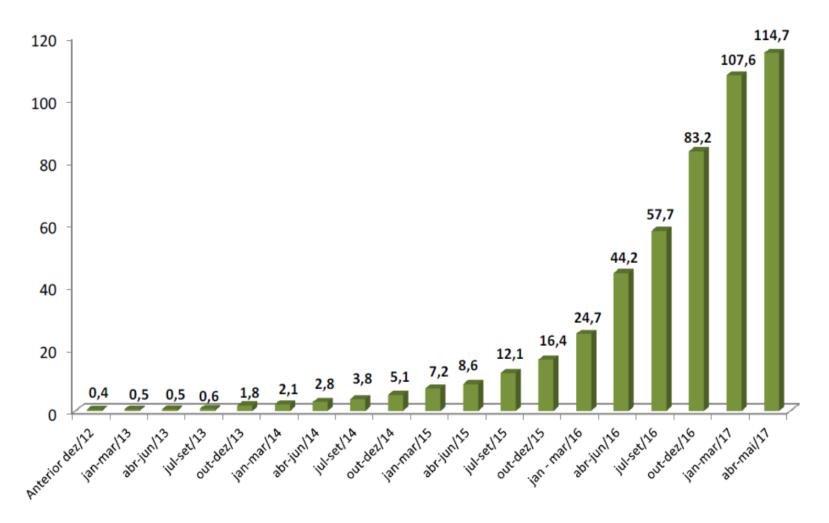


Sistema de Compensação de Energia (Net Metering)

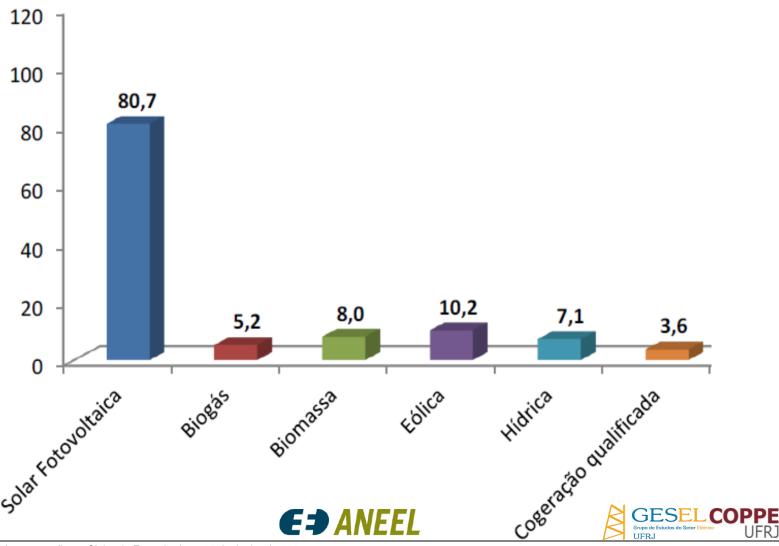
 A energia ativa injetada por unidade consumidora com microgeração ou minigeração distribuída é cedida, por meio de empréstimo gratuito, à distribuidora local e posteriormente compensada como consumo de energia elétrica ativa

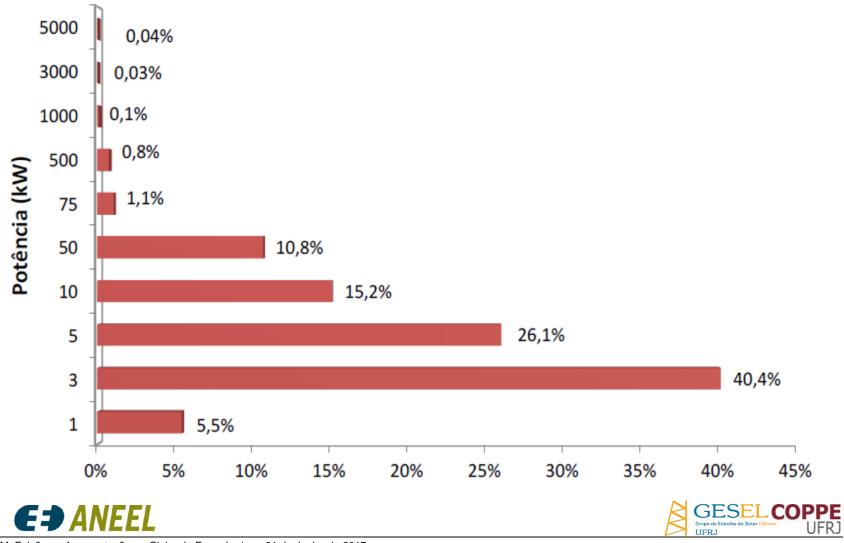
Opções:

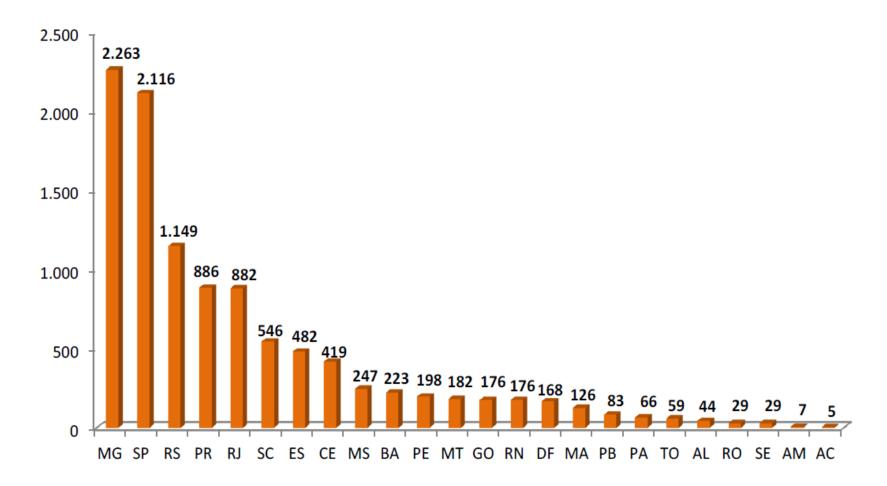

- Microgeração distribuída
- Empreendimento com múltiplas unidades consumidoras
- Auto consumo remoto
- Geração compartilhada


Prazo de validade dos créditos: 60 meses

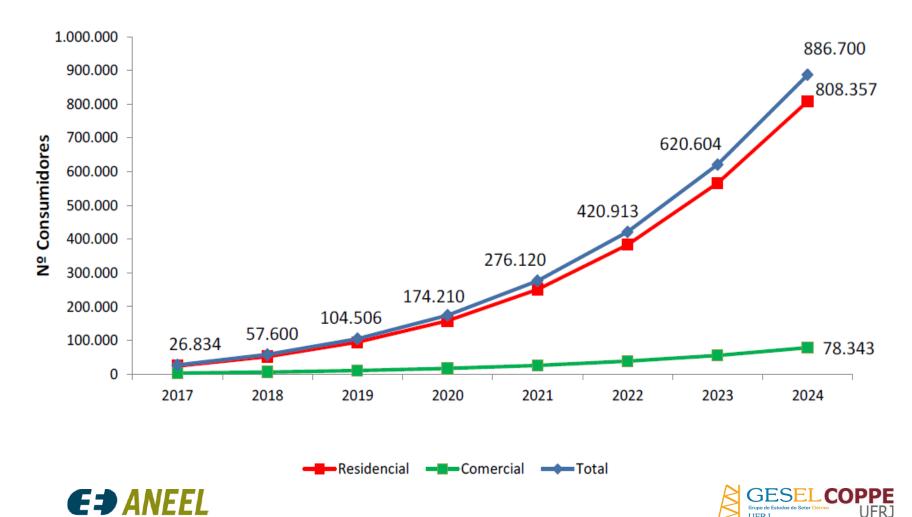
Número de Conexões de Micro e Minigeradores

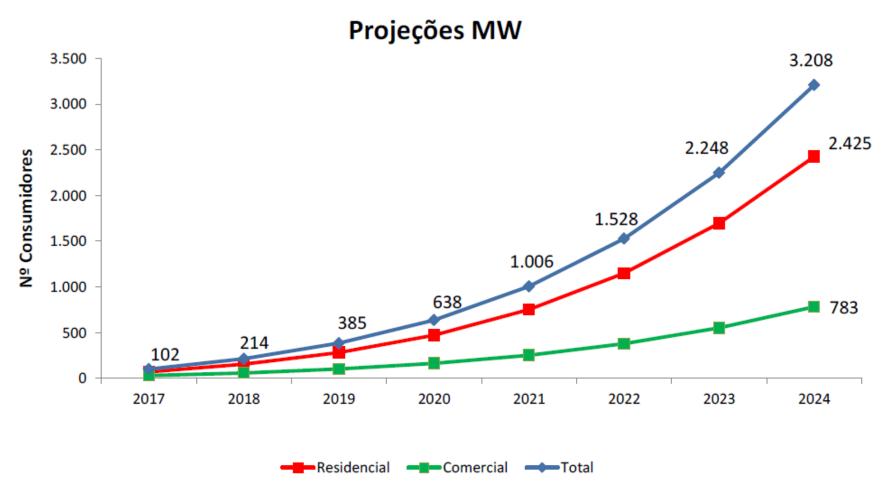

Potência Instalada (MW)




Tipo de Fonte

Classe de Consumo


Instalações por Estados



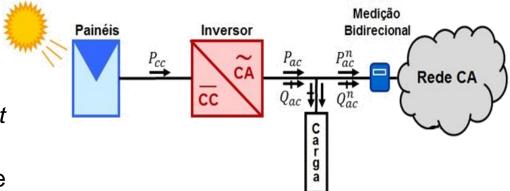
Projeções para o Horizonte 2017-2024

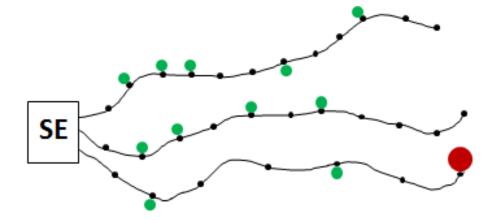
Projeções para o Horizonte 2017-2024 (cont.)

Geração Compartilhada

Condomínio solar construído pela Prátil (Enel) inicia o fornecimento de energia para a rede de farmácias Pague Menos

Construído na cidade de Tabuleiro do Norte, no Ceará, o empreendimento é o primeiro Condomínio Solar em geração distribuída do Brasil. O projeto de R\$ 7 milhões de investimento foi desenvolvido pela Prátil, empresa de soluções do Grupo Enel, e conta com 3.420 placas fotovoltaicas distribuídas por uma área de 35 mil metros quadrados. Com potência total instalada de 1.060 kWp, o condomínio poderia abastecer cerca de 900 residências todos os dias.

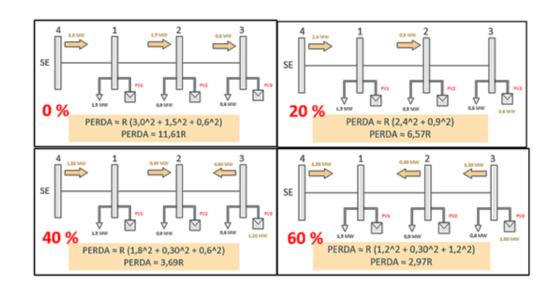

Conexão à Rede Elétrica

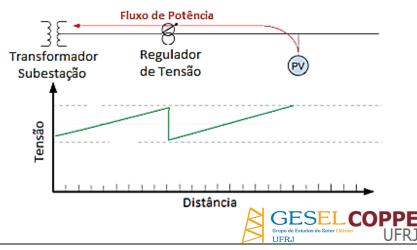

Mini e Microgeração Fotovoltaica

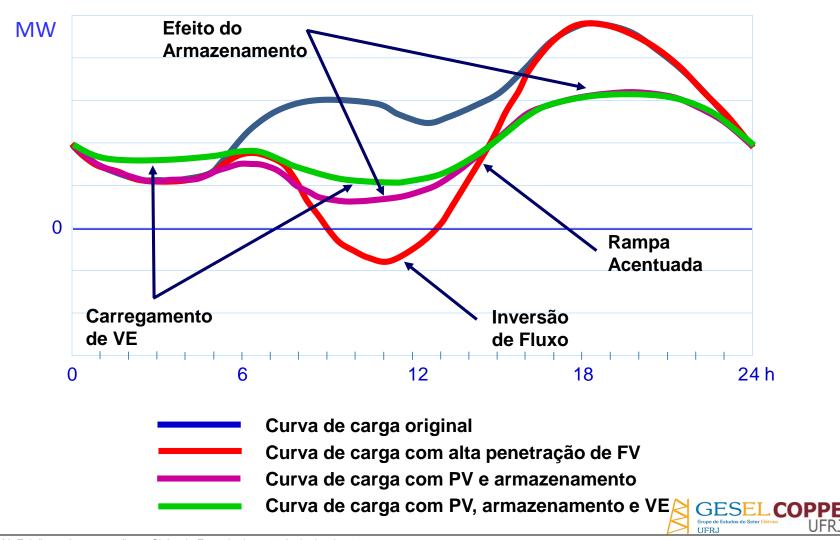
- Geração em CC
- Inversor (inteligente ?)
- Medição bidirecional (net metering)
- Afeta tensão no ponto de acoplamento e fluxo de potência na rede
- Fluxo reverso

Distribuição na rede

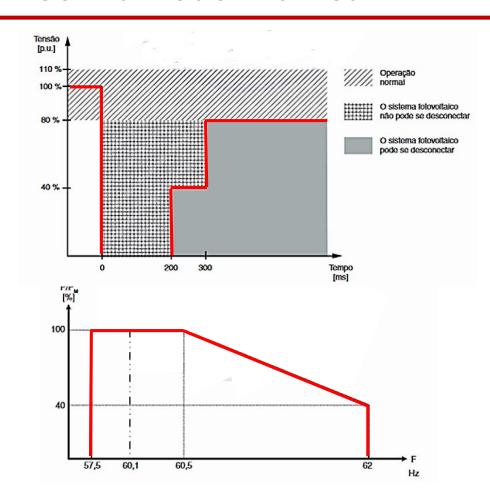
- Distribuída
- Concentrada
 (compartilhada e remota)






Impactos Técnicos da GD nas Redes de Distribuição

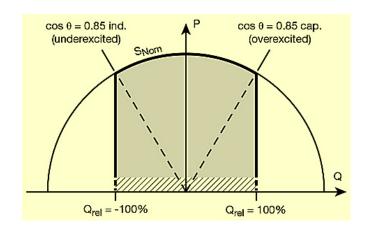
- Carregamento dos Alimentadores (Fluxo Reverso)
- Controle de Tensão
- Perdas Elétricas
- Desgaste de Equipamentos
- Reajuste da Proteção
- Ilhamento não intencional e Detecção de Ilhamento
- Confiabilidade (Ilhamento Intencional)
- Qualidade da Energia
- Segurança Pessoal
- Manutenção

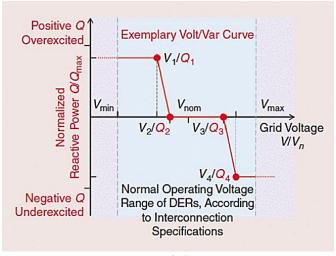

Efeito dos REDs na Rede Elétrica

Interface dos Sistemas FV com a Rede Elétrica

Inversor

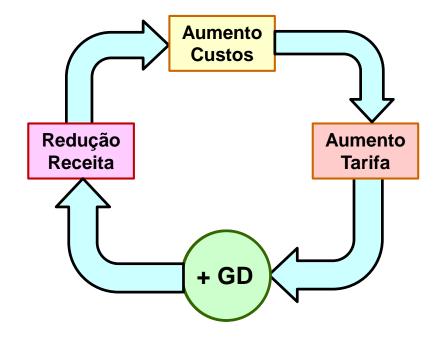
- Conversão CC-CA
- Outras funções de controle e proteção
- Proteção anti-ilhamento
- Reconexão suave em caso de desligamento generalizado
- Sub/Sobre tensão ridetrough
- Sub/Sobre frequência ride-trough




ABNT NBR 16149 Sistemas Fotovoltaicos (FV) — Características da interface de conexão com a rede elétrica de distribuição (01.03.2014)

Controle de Tensão com Inversores Avançados

- Inversores avançados ou inteligentes são capazes de alterar o fator de potência de forma autônoma ou através de sinal de comando do operador
- Exige folga na capacidade do inversor
- 90 % do tempo o inversor opera abaixo de sua capacidade
- NBR 16149
 - Até 3 kW (f p = 1,0)
 - De 3 kW a 6 kW (fp = 0,95 ind 0,95 cap)
 - Acima de 6 kW (fp = 0,90 ind 0,90 cap)



Impactos Econômico-Financeiro

■ "Espiral da Morte"

- Redução de receita
- Aumento de custos (adequação da rede)
- Aumento da tarifa para os que não têm GD
- Aumento da GD (incluindo efeito da redução de custos devido a ganhos de economia de escala

N. Castro, G. Dantas, R. Brandão, M. Moszkowicz e R. Rosental, "Perspectivas e Desafios da Difusão da Micro e da Mini Geração Solar Fotovoltaica no Brasil", TDSE no 67, Gesel/UFRJ, 2016.

Impactos no Sistema Interligado

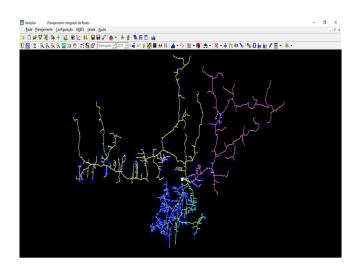
- Elevada penetração da GD eleva a incerteza em relação à demanda no curto-prazo (minutos)
- Perturbações no sistema interligado (tensão, frequência) podem produzir o desligamento de parte da GD
- Desligamento em massa da GD representa aumento instantâneo da demanda tornando a emergência ainda mais severa
- Redução da inércia (mecânica)

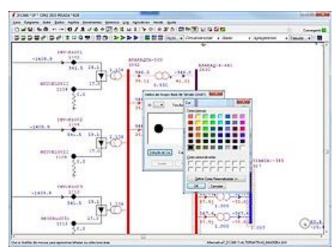
The 50.2-Hz Risk

- Frequência de cuttoff dos inversores dos geradores
 PV na Alemanha
- Perturbações com elevação da frequência acima desses valores quase provocaram blecautes
- Necessidade de retrofit de 315.000 instalações de geração fotovoltaica

Projeto de Pesquisa e Desenvolvimento

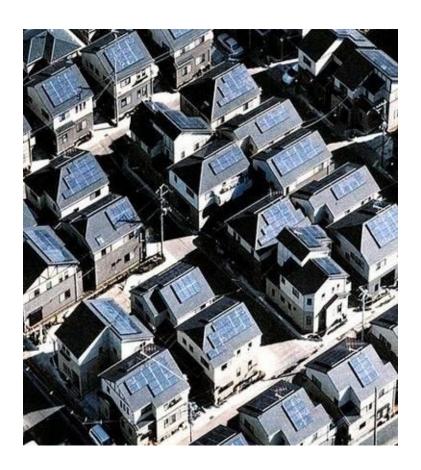
 Impactos dos Recursos Energéticos Distribuídos sobre o Setor de Distribuição


Objetivo Geral: Identificar os ajustes regulatórios mais eficientes para viabilizar a difusão em larga escala da micro e mini geração solar, sem causar impactos financeiros negativos sobre as Distribuidoras


- Desenvolvido pelo GESEL Grupo de Estudos do Setor Elétrico – IE/UFRJ
- Com a participação do Programa de Engenharia Elétrica da COPPE/UFRJ
- Cliente: Grupo Energisa
 - 13 concessões de distribuição de energia em todas as regiões do país
 - 6,3 milhões de clientes
- Concessões Analisadas
 - Energisa Minas Gerais (concluído)
 - Energisa Borborema (em andamento)
 - Energisa Mato Grosso do Sul (previsto)

Foco da Apresentação

- Impacto técnico da mini e microgeração distribuída na rede de distribuição
- Analisadas as redes de AT e MT
- GD instalada na BT agregada aos transformadores de distribuição
- Considerada apenas a geração fotovoltaica
- Ferramentas de análise
 - Interplan (Daimon)
 - Anarede (Cepel)



Cenários de Difusão (1)

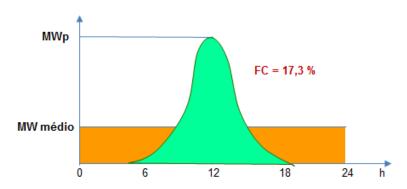
- Impactos econômicos, derivados da redução de mercado e da eventual necessidade de investimentos na adequação da rede, dependem do nível de difusão ou penetração da geração distribuída
- Foram gerados quatro cenários, baseados nas trajetórias das políticas públicas e das reduções de custos possíveis
- Cenários
 - Nublado: fraca
 - Sol Entre Nuvens: moderada
 - Dia de Sol: intensa
 - Sol Forte em Dia Frio: mais intensa

Cenários de Difusão (2)

- Baseados nos levantamentos de mercado da Energisa Minas Gerais e nos prováveis percentuais de penetração com relação a carga do SIN (horizonte 2030)
- Levam em conta as trajetórias das políticas públicas e as possíveis reduções de custos associadas à geração fotovoltaica

Mercado de energia da Energisa MG

- 172 MW médios
- 80% MT + BT (10% Transmissão + 10% AT)
- Cenários SIN / 0,80


Cenários	% da Carga	
Cenarios	do SIN	
Nublado	3	
Sol Entre Nuvens	4,13	
Dia de Sol	4,47	
Sol Forte em Dia Frio	7	

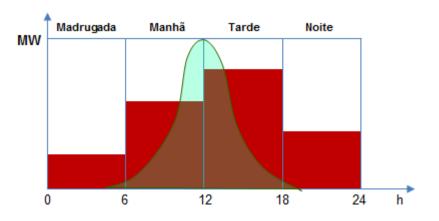
Cenários	% da Carga	
	Energisa	
Nublado	3 <i>,</i> 75	
Sol Entre Nuvens	5,16	
Dia de Sol	5,59	
Sol Forte em Dia Frio	8,75	

Cenários de Difusão (3)

Fator de Capacidade

Nublado: MWp = $(172 \times 0.0375) / 0.173 = 37.3$

 Baseado na composição dos clientes (residenciais, comerciais, baixa renda, etc.), foram estabelecidos como variam as frações dessa capacidade referentes à microgeração e à minigeração


	Total - GD	
Cenários	Energisa	
	(MWp)	
Nublado	37,3	
Sol Entre Nuvens	51,3	
Dia de Sol	55,6	
Sol Forte em Dia Frio	87,0	

Cenários	Micro geração	Mini geração
Nublado	34%	66%
Sol Entre Nuvens	38%	62%
Dia de Sol	34%	66%
Sol Forte	38%	62%

Cenários de Carga

- Os cenários de carga foram fornecidos pela Cataguases MG para a situação presente de operação do sistema
- De acordo com o modelo utilizada no Interplan, esses dados correspondem a quatro patamares
 - Madrugada
 - Manhã
 - Tarde
 - Noite
- Como o estudo contempla apenas geração fotovoltaica, apenas os períodos manhã e tarde foram considerados

Em geral, o período da tarde apresenta os valores mais elevadas, sendo que apenas em poucos casos isso acontece no período da manhã

Alimentadores da Energisa MG

Hipóteses

- Minigeração (≤5 MW) apenas em alimentadores rurais
- Microgeração: urbanos e mistos

Dois casos considerados

 Apenas em alimentadores urbanos e mistos de média renda (23)

 Em alimentadores urbanos e mistos de média renda e urbanos de baixa

renda (23+38 = 61) (incentivo governamental para baixa renda)

Potência total (kWp) por alimentador

Alimen-	Baixa	Média
tadores	renda	renda
Urbanos	38	11
Mistos	81	12
Rurais	24	05

Cenários	Micro geração total (MWp)	Micro geração por alimentador 23 (kWp)	Micro geração por alimentador 61 (kWp)
Nublado	17,30	751,6	283,4
Sol Entre Nuvens	21,30	926,3	349,3
Dia de Sol	20,60	894,5	337,3
Sol Forte	37,00	1608,6	606,5

Alimentadores Urbanos

- Alimentador 1 MRE2-005
- Alimentador 2 MRE1-004
- Alimentador 3 UBA2-009

Concentrado

Média (Alimentadores 1, 2 e 3)				
Cenários	Potência	Sobre	Sobre	
Cenarios	GD (kW)	tensão	carga	
Nublado	751,6	-	-	
Sol Entre Nuvens 926,3				
Dia de Sol	894,5		-	
Sol Forte	1609	Sim	-	

Microgeração nos Alimentadores Urbanos - Classe

23 al.

Média (Alimentadores 1. 2 e 3) Sobre Potência Sobre Cenários GD (kW) tensão carga

Microgeração nos Alimentadores Urbanos - Classe

61 al.

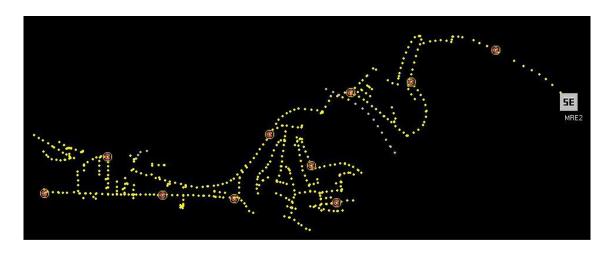
Nublado 283,4 **Sol Entre Nuvens** 349,3 Dia de Sol 337,3 **Sol Forte** 606,5

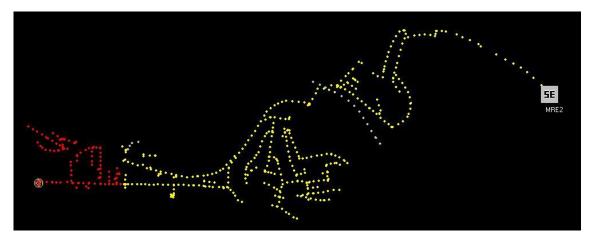
- A distribuição da GD dentro dos alimentadores
 - Caso concentrado (toda a GD do alimentador concentrada num dado ponto da rede de média tensão)
 - Caso distribuído (GD dispersa em 10 pontos aleatórios da rede de média tensão).

Distribuído

Microgeração nos Alimentadores Urbanos -Classe Média (Alimentadores 1. 2 e 3)

Cenários	Potência	Sobre	Sobre
Cenarios	GD (kW)	tensão	carga
Nublado	75,16	-	-
Sol Entre Nuvens	92,63	-	-
Dia de Sol	89,45	-	-
Sol Forte	160,9	-	-

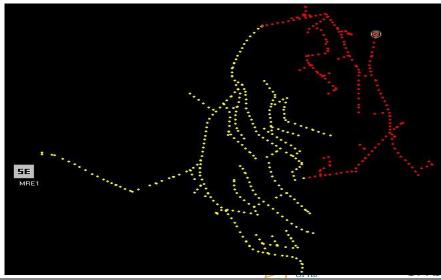

Microgeração nos Alimentadores Urbanos -Classe Média(Alimentadores 1, 2 e 3)


Cenários	Potência	Sobre	Sobre
Cenarios	GD (kW)	tensão	carga
Nublado	28,34	-	-
Sol Entre Nuvens	34,93	-	-
Dia de Sol	33,73	-	-
Sol Forte	60,65	-	-
	1	> TIED I	

Alimentador 1

Perfil de tensões do Alimentador 1 para o cenário "Dia de Sol-23" com GD distribuída em 10 pontos dentro do alimentador (Manhã e Tarde)

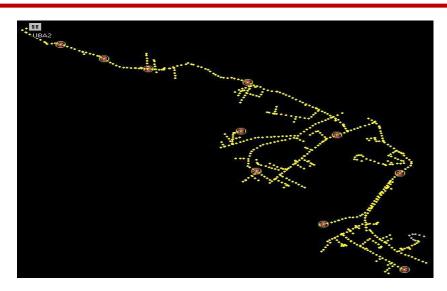
Perfil de tensões do Alimentador 1 para o cenário "Sol Forte em Dia Frio-23" com GD concentrada em um único ponto dentro do alimentador (Manhã)

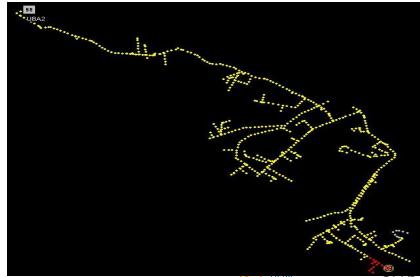


Alimentador 2

Panorama do carregamento no Alimentador 2 para o cenário "Dia de Sol-23" com GD distribuída em 10 pontos (Manhã e Tarde)

Perfil de tensões do Alimentador 2 para o cenário "Sol Forte em Dia Frio-23", com GD concentrada em um único ponto do alimentador (Manhã)

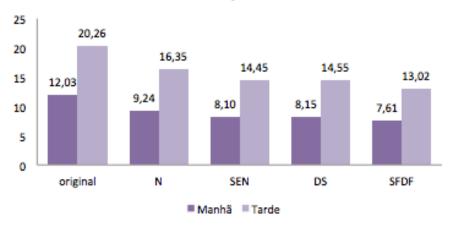


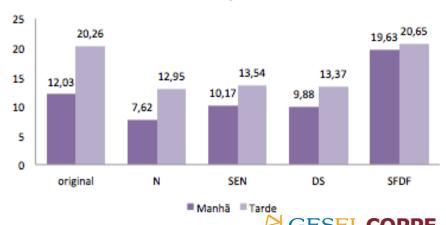


Alimentador 3

Perfil de tensões do Alimentador 3 para o cenário "Dia de Sol-23" com GD distribuída em 10 pontos (Manhã e Tarde)

Perfil de tensões do Alimentador 3 para o cenário "Dia de Sol-23" com GD concentrada em um único ponto (Manhã)



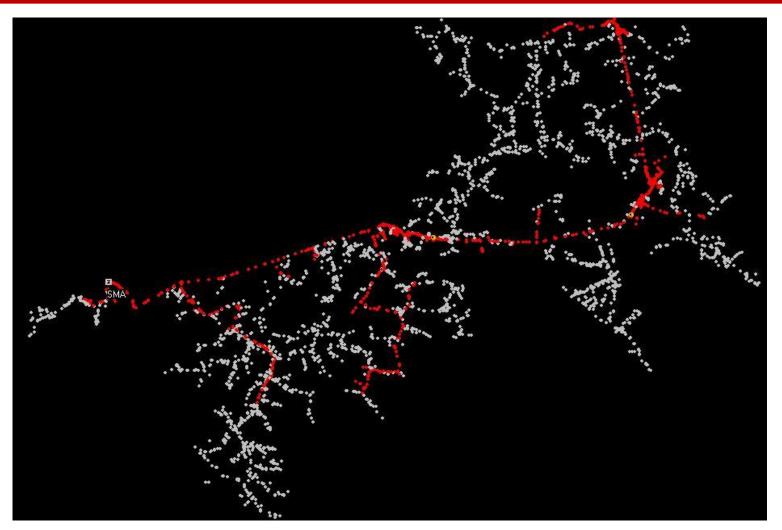

Perdas

- Observa-se que, de maneira geral, a tendência da microgeração distribuída é, ao abater uma parcela das cargas, diminuir as perdas pela redução da corrente demandada da subestação
- No cenário SFDF, as perdas voltam a aumentar, podendo ultrapassar o caso sem GD
- Isso ocorre pelo fato de tratarse de casos concentrados, em que toda a GD foi colocada num só ponto do alimentador

Perdas em kW no alimentador 3, caso concentrado, divisão por 61 alimentadores

Perdas em kW no alimentador 3, caso concentrado, divisão por 23 alimentadores

Alimentadores Rurais


- Alimentador 7 SMA-CNA (consulta de acesso CGH)
- Alimentador 8 MAU1-URG
- Alimentador 9 RCO-RCO (consulta de acesso fotovoltaica)
- A inserção da GD provoca diversos problemas de sobretensão e sobrecarga nos alimentadores rurais

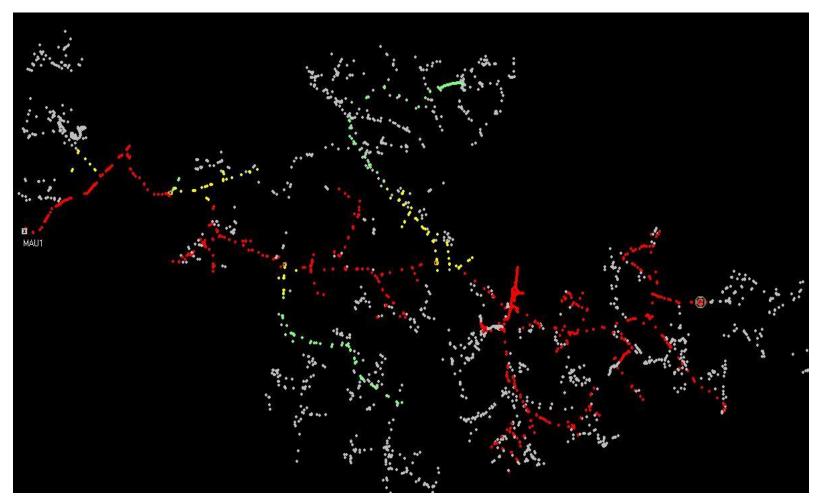
Minigeração nos Alimentadores Rurais (Alimentadores 7, 8 e 9)				
	Potência GD	Sobre	Sobre	
Cenários	(MW)	tensão	carga	
Nublado	5,0	Sim	Sim	
Sol Entre Nuvens	5,0	Sim	Sim	
Dia de Sol	5,0	Sim	Sim	
Sol Forte	5,0	Sim	Sim	

Perdas Muito elevadas. Resultado não realistas pois alimentadores não estão preparados para esse carregamento

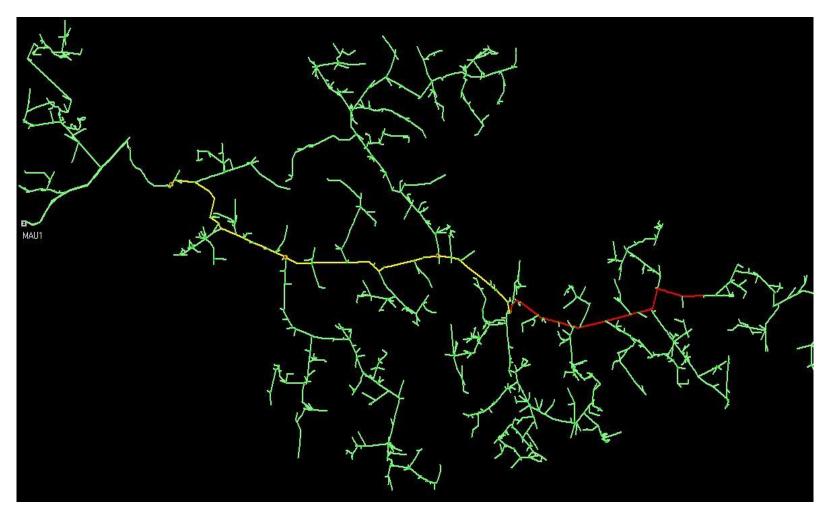
Para a conexão de geração compartilhada de grande porte (≤ 5 MW) é necessário uma solicitação de aumento de carga, que deverá ser acompanhada por uma análise de viabilidade da conexão da geração distribuída nos alimentadores


Alimentador 7 (1)

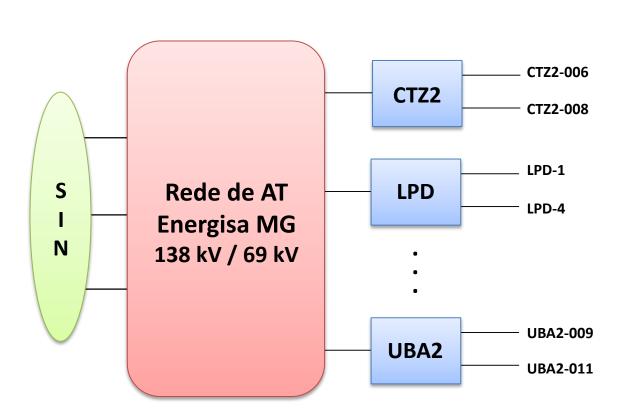
Perfil de tensões no alimentador 7 com GD de 5 MW (manhã)


Alimentador 7 (2)

Perfil de carregamento no alimentador 7 com GD de 5 MW (manhã)


Alimentador 8 (1)

Perfil de tensões no alimentador 8 com GD de 5 MW (manhã)



Alimentador 8 (2)

Perfil de carregamento no alimentador 8 com GD de 5 MW (manhã) GESEL COPPE

Análise da Rede de Alta Tensão

Subestação	Alimentador	
CTZ2	CTZ2-006	
CTZ2	CTZ2-008	
LPD	LPD-1	
LPD	LPD-4	
MAU1	MAU1-REO	
MRE1	MRE1-004	
MRE2	MRE2-05	
MRE2	MRE2-FAM	
MRE2	MRE2-PTM	
MRI	MRI-ALM1	
RDR	RDR-DTU	
RDR	RDR-RDR2	
SUM	SUM-1	
UBA1	UBA1-010	
UBA1	UBA1-013	
UBA2	UBA2-005	
UBA2	UBA2-008	
UBA2	UBA2-009	
UBA2	UBA2-011	
UBA2	UBA2-ITA	
UBA3	UBA3-014	
VRB	VRB-002	
VRB2	VRB2-005	

Carregamento dos Alimentadores e Subestações

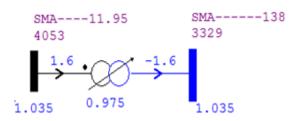
Total da Microgeração nos Cenários por Subestação

poi subcatação					
SE	Nubla-	Sol Entre	Dia de	Sol Forte	
	do	Nuvens	Sol		
CTZ2	1,504	1,852	1,791	3,217	
LPD	1,504	1,852	1,791	3,217	
MAU1	0,752	0,926	0,896	1,609	
MRE1	0,752	0,926	0,896	1,609	
MRE2	2,257	2,778	2,687	4,826	
MRI	0,752	0,926	0,896	1,609	
RDR	1,504	1,852	1,791	3,217	
SUM	0,752	0,926	0,896	1,609	
UBA1	1,504	1,852	1,791	3,217	
UBA2	3,761	4,630	4,478	8,043	
UBA3	0,752	0,926	0,896	1,609	
VRB	0,752	0,926	0,896	1,609	
VRB2	0,752	0,926	0,896	1,609	
Total	17,3	21,3	20,6	37,0	
Valores em MW					

Total da Minigeração nos Cenários de Difusão

Conórios	Nubla	Sol entre	Dia de	Sol
Cenários	do	Nuvens	Sol	Forte
Unidades de Minigeração	4	6	7	10
Total	20,0	30,0	35,0	50,0
Valores em MW				

Total da Geração Distribuída (Mini e Microgeração por Cenário)


Cenários	Nubla- do	Sol entre Nuvens	Dia de Sol	Sol Forte
Microgeração	17,3	21,3	20,6	37,0
Minigeração	20,0	30,0	35,0	50,0
Total	37,3	51,3	55,6	87,0
Valores em MW				

Resultados

- A inserção de plantas de geração distribuída, mesmo no caso com maior difusão (Cenário Sol Forte, não ocasiona impactos significativos na rede de AT
- Conclui-se que, nestes níveis de penetração, a geração distribuída é insuficiente para ocasionar problemas na rede de AT
- Exemplos de efeitos importantes observados
 - Elevação da tensão nos barramentos de AT
 - Inversão de Fluxo

Barra AT	Tensão (pu)		
	Sem GD	Com GD	
MRE(2)69k 3308	1.013	1.035	
SMA138 3329	1.007	1.035	

Conclusões

- Além dos resultados apresentados, outros estudos foram realizados e não relatados devido ao tempo da apresentação.
- Os principais impactos da presença de geração fotovoltaica distribuída em sistemas de distribuição, estão relacionados com a geração compartilhada de grande porte (minigeração).
- Os impactos da microgeração pulverizada foram praticamente inexistentes, tanto em termos de tensão quanto de carregamento, corroborando conclusões de trabalhos publicados sobre o mesmo tema.
- Alimentadores rurais estão mais suscetíveis a impactos relacionados a presença de GD, enquanto os alimentadores urbanos praticamente não são impactados pela inserção de geração distribuída, exceto em casos de geração compartilhada de grande porte localizada no final dos alimentadores.

Conclusões (cont.)

- Em geral, as perdas elétricas nos sistemas de distribuição são reduzidas na presença de GD. Entretanto, mostrou-se que para níveis acentuados de penetração, o quadro pode ser revertido, com um aumento das perdas elétricas nos alimentadores.
- A utilização ou não de inversores avançados é um fator preponderante nas perdas elétricas dos alimentadores. Entretanto a operação com fator de potência não unitário, ou seja, absorvendo ou injetando potência reativa na rede, provoca um aumento da circulação de corrente nos cabos, contribuindo para um aumento das perdas ôhmicas associadas
- Com relação à análise de alternativas que visam mitigar alguns dos impactos mencionados, a redução da tensão da subestação mostrou ser um fator importante na redução de problemas de sobretensão associada à presença de GD. Entretanto, a redução da tensão da subestação está associada a um aumento do número de atuações do tape do transformador, reduzindo sua vida útil.

Obrigado

Djalma M. Falcão

falcao@nacad.ufrj.br

COPPE/UFRJ
Programa de Engenharia Elétrica
Caixa Postal 68504
21941-972 Rio de Janeiro RJ